品牌:上海亞琦
型號:YT-132M1-64KW
結構型式:旋轉電樞式
相數:三相
極數:6極
轉子結構:凸極式
原動機類別:其他
適用范圍:工業用
機殼保護方式:封閉式
加工定制:否
型號:YT-180L-615KW
型號 | 功率 | 型號 | 功率 | 型號 | 功率 | 型號 | 功率 |
YT-801-2 | 0.75KW | YT-802-4 | 0.75KW | YT-802-6 | 0.37KW | YT-90S-8 | 0.37KW |
YT-802-2 | 1.1KW | YT-90S-4 | 1.1KW | YT-802-6 | 0.55KW | YT-90L-8 | 0.55KW |
YT-90S-2 | 1.5KW | YT-90L-4 | 1.5KW | YT-90S-6 | 0.75KW | YT-100L1-8 | 0.75KW |
YT-90L-2 | 2.2KW | YT-100L1-4 | 2.2KW | YT-90L-6 | 1.1KW | YT-100L2-8 | 1.1KW |
YT-100L-2 | 3KW | YT-100L2-4 | 3KW | YT-100L-6 | 1.5KW | YT-112M-8 | 1.5KW |
YT-112M-2 | 4KW | YT-112M-4 | 4KW | YT-112M-6 | 2.2KW | YT-132S-8 | 2.2KW |
YT-132S1-2 | 5.5KW | YT-132S-4 | 5.5KW | YT-132S-6 | 3KW | YT-132M-8 | 3KW |
YT-132S2-2 | 7.5KW | YT-132M-4 | 7.5KW | YT-132M1-6 | 4KW | YT-160M1-8 | 4KW |
YT-160M1-2 | 11KW | YT-160M-4 | 11KW | YT-132M2-6 | 5.5KW | YT-160M2-8 | 5.5KW |
YT-160M2-2 | 15KW | YT-160L-4 | 15KW | YT-160M-6 | 7.5KW | YT-160L-8 | 7.5KW |
YT-160L-2 | 18.5KW | YT-180M-4 | 18.5KW | YT-160L-6 | 11KW | YT-16M2-8 | 5.5KW |
YT-180M-2 | 22KW | YT-180L-4 | 22KW | YT-180L-6 | 15KW | YT-160L-8 | 7.5KW |
YT-200L1-2 | 30KW | YT-200L-4 | 30KW | YT-200L1-6 | 18.5KW | YT-180L-8 | 11KW |
YT-200L2-2 | 37KW | YT-225S-4 | 37KW | YT-200L2-6 | 22KW | YT-200L-8 | 15KW |
YT-225M-2 | 45KW | YT-225M-4 | 45KW | YT-225M-6 | 30KW | YT-225S-8 | 18.5KW |
YT-250M-2 | 55KW | YT-250M-4 | 55KW | YT-250M-6 | 37KW | YT-225M-8 | 22KW |
YT-280S-2 | 75KW | YT-280S-4 | 75KW | YT-280S-6 | 45KW | Y-250M-8 | 30KW |
YT-280M-2 | 90KW | YT-280M-4 | 90KW | YT-280M-6 | 55KW | YT-280S-8 | 37KW |
YT-315S-2 | 110KW | YT-315S-4 | 110KW | YT-315S-6 | 75KW | YT-280M-8 | 45KW |
YT-315M-2 | 132KW | YT-315M-4 | 132KW | YT-315M-6 | 90KW | ||
YT-315L1-2 | 160KW | YT-315L1-4 | 160KW | YT-315L1-6 | 110KW | ||
YT-315L2-2 | 200KW | YT-315L2-4 | 200KW | YT-315L2-6 | 132KW | ||
YT-355M-2 | 250KW | YT-355M-4 | 250KW | YT-355M1-6 | 160KW | ||
YT-355L-2 | 315KW | YT-355L-4 | 315KW | YT-355M2-6 | 200KW | ||
YT-355L-6 | 250KW |
永磁同步電機控制策略綜述
1 引言
近年來,隨著電力電子技術、微電子技術、新型電機控制理論和稀土永磁材料的快速發展,永磁同步電動機得以迅速的推廣應用。永磁同步電動機具有體積小,損耗低,效率高等優點,在節約能源和環境保護日益受到重視的今天,對其研究就顯得非常必要。因此。這里對永磁同步電機的控制策略進行綜述,并介紹了永磁同步電動機控制系統的各種控制策略發展方向。
2 永磁同步電動機的數學模型
當永磁同步電動機的定子通入三相交流電時,三相電流在定子繞組的電阻上產生電壓降。由三相交流電產生的旋轉電樞磁動勢及建立的電樞磁場,一方面切割定子繞組,并在定子繞組中產生感應電動勢;另一方面以電磁力拖動轉子以同步轉速旋轉。電樞電流還會產生僅與定子繞組相交鏈的定子繞組漏磁通,并在定子繞組中產生感應漏電動勢。此外,轉子永磁體產生的磁場也以同步轉速切割定子繞組。從而產生空載電動勢。為了便于分析,在建立數學模型時,假設以下參數:①忽略電動機的鐵心飽和;②不計電機中的渦流和磁滯損耗;③定子和轉子磁動勢所產生的磁場沿定子內圓按正弦分布,即忽略磁場中所有的空間諧波;④各相繞組對稱,即各相繞組的匝數與電阻相同,各相軸線相互位移同樣的電角度。
在分析同步電動機的數學模型時,常采用兩相同步旋轉(d,q)坐標系和兩相靜止(α,β)坐標系。圖1給出永磁同步電動機在(d,q)旋轉坐標系下的數學模型。
(1)定子電壓方程為:
式中:r為定子繞組電阻;p為微分算子,p=d/dt;id,iq為定子電流;ud,uq為定子電壓;ψd,ψq分別為磁鏈在d,q軸上的分量;ωf為轉子角速度(ω=ωfnp);np為電動機極對數。
(2)定子磁鏈方程為:
式中:ψf為轉子磁鏈。
(3)電磁轉矩為:
式中:J為電機的轉動慣量。
若電動機為隱極電動機,則Ld=Lq,選取id,iq及電動機機械角速度ω為狀態變量,由此可得永磁同步電動機的狀態方程式為:
由式(7)可見,三相永磁同步電動機是一個多變量系統,而且id,iq,ω之間存在非線性耦合關系,要想實現對三相永磁同步電機的高性能控制,是一個頗具挑戰性的課題。
3 永磁同步電動機的控制策略
任何電動機的電磁轉矩都是由主磁場和電樞磁場相互作用產生的。直流電動機的主磁場和電樞磁場在空間互差90°,因此可以獨立調節;交流電機的主磁場和電樞磁場互不垂直,互相影響。因此,長期以來,交流電動機的轉矩控制性能較差。經過長期研究,目前的交流電機控制有恒壓頻比控制、矢量控制、直接轉矩控制等方案。
3.1 恒壓頻比控制
恒壓頻比控制是一種開環控制。它根據系統的給定,利用空間矢量脈寬調制轉化為期望的輸出電壓uout進行控制,使電動機以一定的轉速運轉。在一些動態性能要求不高的場所,由于開環變壓變頻控制方式簡單,至今仍普遍用于一般的調速系統中,但因其依據電動機的穩態模型,無法獲得理想的動態控制性能,因此必須依據電動機的動態數學模型。永磁同步電動機的動態數學模型為非線性、多變量,它含有ω與id或iq的乘積項,因此要得到精確的動態控制性能,必須對ω和id,iq解耦。近年來,研究各種非線性控制器用于解決永磁同步電動機的非線性特性。
永磁同步電機控制策略綜述
1 引言
近年來,隨著電力電子技術、微電子技術、新型電機控制理論和稀土永磁材料的快速發展,永磁同步電動機得以迅速的推廣應用。永磁同步電動機具有體積小,損耗低,效率高等優點,在節約能源和環境保護日益受到重視的今天,對其研究就顯得非常必要。因此。這里對永磁同步電機的控制策略進行綜述,并介紹了永磁同步電動機控制系統的各種控制策略發展方向。
2 永磁同步電動機的數學模型
當永磁同步電動機的定子通入三相交流電時,三相電流在定子繞組的電阻上產生電壓降。由三相交流電產生的旋轉電樞磁動勢及建立的電樞磁場,一方面切割定子繞組,并在定子繞組中產生感應電動勢;另一方面以電磁力拖動轉子以同步轉速旋轉。電樞電流還會產生僅與定子繞組相交鏈的定子繞組漏磁通,并在定子繞組中產生感應漏電動勢。此外,轉子永磁體產生的磁場也以同步轉速切割定子繞組。從而產生空載電動勢。為了便于分析,在建立數學模型時,假設以下參數:①忽略電動機的鐵心飽和;②不計電機中的渦流和磁滯損耗;③定子和轉子磁動勢所產生的磁場沿定子內圓按正弦分布,即忽略磁場中所有的空間諧波;④各相繞組對稱,即各相繞組的匝數與電阻相同,各相軸線相互位移同樣的電角度。
在分析同步電動機的數學模型時,常采用兩相同步旋轉(d,q)坐標系和兩相靜止(α,β)坐標系。圖1給出永磁同步電動機在(d,q)旋轉坐標系下的數學模型。
(1)定子電壓方程為:
式中:r為定子繞組電阻;p為微分算子,p=d/dt;id,iq為定子電流;ud,uq為定子電壓;ψd,ψq分別為磁鏈在d,q軸上的分量;ωf為轉子角速度(ω=ωfnp);np為電動機極對數。
(2)定子磁鏈方程為:
式中:ψf為轉子磁鏈。
(3)電磁轉矩為:
式中:J為電機的轉動慣量。
若電動機為隱極電動機,則Ld=Lq,選取id,iq及電動機機械角速度ω為狀態變量,由此可得永磁同步電動機的狀態方程式為:
由式(7)可見,三相永磁同步電動機是一個多變量系統,而且id,iq,ω之間存在非線性耦合關系,要想實現對三相永磁同步電機的高性能控制,是一個頗具挑戰性的課題。
3 永磁同步電動機的控制策略
任何電動機的電磁轉矩都是由主磁場和電樞磁場相互作用產生的。直流電動機的主磁場和電樞磁場在空間互差90°,因此可以獨立調節;交流電機的主磁場和電樞磁場互不垂直,互相影響。因此,長期以來,交流電動機的轉矩控制性能較差。經過長期研究,目前的交流電機控制有恒壓頻比控制、矢量控制、直接轉矩控制等方案。
3.1 恒壓頻比控制
恒壓頻比控制是一種開環控制。它根據系統的給定,利用空間矢量脈寬調制轉化為期望的輸出電壓uout進行控制,使電動機以一定的轉速運轉。在一些動態性能要求不高的場所,由于開環變壓變頻控制方式簡單,至今仍普遍用于一般的調速系統中,但因其依據電動機的穩態模型,無法獲得理想的動態控制性能,因此必須依據電動機的動態數學模型。永磁同步電動機的動態數學模型為非線性、多變量,它含有ω與id或iq的乘積項,因此要得到精確的動態控制性能,必須對ω和id,iq解耦。近年來,研究各種非線性控制器用于解決永磁同步電動機的非線性特性。
專業、專注、優異品質源于臺灣。=======銷售專線電話======
T;021-61550266/61550267/60449944 F:021-33863423 qq:1304620380
地址:上海市青浦區北青公路9608號
移動電話:13918660275
郵箱: